SqueezeBrains SDK 1.18
|
Project Parameters. More...
Data Structures | |
class | sb_cs::SbParSl |
Shallow Learning modules parameters class that wraps the sb_t_par_sl structure More... | |
class | sb_cs::SbParLevel |
Level parameters Class that wraps the sb_t_level_par structure More... | |
class | sb_cs::SbPerturbation |
Perturbations Class that wraps the sb_t_perturbation structure More... | |
class | sb_cs::SbParModel |
Model parameters class that wraps the sb_t_par_model structure More... | |
class | sb_cs::SbDevicesPar |
Defines computing device types that wraps the sb_t_devices_par structure More... | |
class | sb_cs::SbSvlDlParNetwork |
Deep Learning network parameters class that wraps the sb_t_svl_dl_par_network structure More... | |
class | sb_cs::SbSvlDlParPerturbation |
Describes the perturbation of the image / defect, it wraps the sb_t_svl_dl_par_perturbation structure More... | |
class | sb_cs::SbSvlDlTilingPar |
SVL parameters that configure the Shallow Learning training, it wraps the sb_t_svl_dl_tiling_par structure More... | |
class | sb_cs::SbSvlDlPar |
SVL parameters that configure the Shallow Learning training, it wraps the sb_t_svl_sl_par structure More... | |
class | sb_cs::SbSvlSlPar |
SVL parameters that configure the Shallow Learning training, it wraps the sb_t_svl_sl_par structure More... | |
class | sb_cs::SbSvlPar |
Svl parameters (not used at the moment) that wraps the sb_t_svl_par structure More... | |
class | sb_cs::SbPar |
Parameters Class that wraps the sb_t_par structure. You must call the Dispose() method to free all the resources of the returned instance. More... | |
Project Parameters.
|
strong |
Floating point precision type that wraps the sb_t_floating_point_op_type enum
Enumerator | |
---|---|
SB_FLOATING_POINT_OPS_TYPE_SINGLE_PRECISION | Single Precision (Float32) |
SB_FLOATING_POINT_OPS_TYPE_HALF_PRECISION | Single Precision (Float16) |
|
strong |
Enumerates the image borders extension mode, it wraps the sb_t_image_borders_extension_mode enum.
|
strong |
Image circularity that wraps the sb_t_image_circularity_type enum
Enumerator | |
---|---|
SB_IMAGE_CIRCULARITY_TYPE_NONE | No image circularity. |
SB_IMAGE_CIRCULARITY_TYPE_HORIZONTAL | Horizontal image circularity. |
SB_IMAGE_CIRCULARITY_TYPE_VERTICAL | Vertical image circularity. |
|
strong |
Enumerates the type of loss function, it wraps the sb_t_loss_fn_type enum.
Enumerator | |
---|---|
SB_LOSS_FN_TYPE_CCE | CCE loss. |
SB_LOSS_FN_TYPE_FOCAL | Foacal loss. |
SB_LOSS_FN_TYPE_BCE | BCE loss. |
|
strong |
Deep learning network freeze mode that wraps the sb_t_network_freeze_mode enum
|
strong |
Deep Learning Network type that wraps the sb_t_network_type enum
Enumerator | |
---|---|
SB_NETWORK_TYPE_EFFICIENTNET_B0 | Deep Learning EfficientNet b0. |
SB_NETWORK_TYPE_EFFICIENTNET_B1 | Deep Learning EfficientNet b1. |
SB_NETWORK_TYPE_EFFICIENTNET_B2 | Deep Learning EfficientNet b2. |
SB_NETWORK_TYPE_SDINET0 | Deep Learning Surface Defects Inspection Network 0 with variable input size. |
SB_NETWORK_TYPE_ICNET0_64 | Deep Learning Image Classification Network 0 with input size 64x64. |
SB_NETWORK_TYPE_ICNET0_128 | Deep Learning Image Classification Network 0 with input size 128x128. |
SB_NETWORK_TYPE_ODNET0 | Deep Learning Object Detection Network 0 with input size 416x416.
|
|
strong |
Enumerates the mode of the perturbations, it wraps the sb_t_perturbation_mode enum.
Enumerator | |
---|---|
SB_PERTURBATION_MODE_ONLINE | Online perturbation. |
SB_PERTURBATION_MODE_OFFLINE | Offline perturbation. |
SB_PERTURBATION_MODE_BOTH | Both online and offline perturbations. |
|
strong |
Enumerates the range of application of the perturbations, it wraps the sb_t_perturbation_type enums.
|
strong |
Project type that wraps the sb_t_project_type enum
|
strong |
Svl par optimization mode that wraps the sb_t_svl_par_optimization_mode enum
|
strong |
Enumerates the tiling mode, it wraps the sb_t_tiling_mode enum.
Enumerator | |
---|---|
SB_TILING_MODE_MANUAL | Manual tiling. |
SB_TILING_MODE_AUTO | Auto-tiling. |